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ABSTRACT

Forcing a land surface model (LSM) offline with realistic global fields of precipitation, radiation, and near-
surface meteorology produces realistic fields (within the context of the LSM) of soil moisture, temperature, and
other land surface states. These fields can be used as initial conditions for precipitation and temperature forecasts
with an atmospheric general circulation model (AGCM). Their usefulness is tested in this regard by performing
retrospective 1-month forecasts (for May through September, 1979–93) with the NASA Global Modeling and
Assimilation Office (GMAO) seasonal prediction system. The 75 separate forecasts provide an adequate statistical
basis for quantifying improvements in forecast skill associated with land initialization.

Evaluation of skill is focused on the Great Plains of North America, a region with both a reliable land
initialization and an ability of soil moisture conditions to overwhelm atmospheric chaos in the evolution of the
meteorological fields. The land initialization does cause a small but statistically significant improvement in
precipitation and air temperature forecasts in this region. For precipitation, the increases in forecast skill appear
strongest in May through July, whereas for air temperature, they are largest in August and September. The joint
initialization of land and atmospheric variables is considered in a supplemental series of ensemble monthly
forecasts. Potential predictability from atmospheric initialization dominates over that from land initialization
during the first 2 weeks of the forecast, whereas during the final 2 weeks, the relative contributions from the
two sources are of the same order. Both land and atmospheric initialization contribute independently to the actual
skill of the monthly temperature forecast, with the greatest skill derived from the initialization of both. Land
initialization appears to contribute the most to monthly precipitation forecast skill.

1. Introduction

Numerical weather forecasts rely on atmospheric ini-
tialization—the accurate specification of atmospheric
pressures, temperatures, winds, and humidities at the
beginning of the forecast. Such initialization may con-
tribute to forecast skill at leads of up to 10 days. Fore-
casts at longer leads, however, require a different strat-
egy. They must take advantage of slower modes of the
climate system, modes with states that are not so quickly
dissipated by chaos. To this end, operational centers now
supply seasonal atmospheric forecasts based largely on
forecasts of ocean behavior. The idea is simple—if sea
surface temperatures (SSTs) can be predicted months in
advance, and if the atmosphere responds in predictable
ways to the predicted SSTs, then aspects of the atmo-
sphere’s behavior can be predicted months in advance.
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Soil moisture, another slow variable of the climate
system, is beginning to garner attention in the forecast
community (e.g., Dirmeyer et al. 2003). The time scales
of soil moisture memory are typically 1 or 2 months
(Vinnikov and Yeserkepova 1991; Entin et al. 2000),
significantly less than those of the ocean. Nevertheless,
soil moisture has a special importance. Some atmo-
spheric general circulation model (AGCM) studies (Ku-
mar and Hoerling 1995; Trenberth et al. 1998; Shukla
1998; Koster et al. 2000) note a strong tropical–extra-
tropical contrast in the ocean’s impact on climate. This
impact in midlatitudes, where much of the world’s pop-
ulation lives, may be significantly modulated by land
surface processes, particularly in summer. Soil moisture
may play a key role in these areas (Koster et al. 2000).

AGCMs are indeed useful tools for examining the
role of soil moisture in the climate system. [See Koster
and Suarez (2003) for a literature review of a number
of relevant studies.] Of particular relevance to fore-
casting are those studies that evaluate the improvement
of forecast skill associated with the correct initialization
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of soil moisture. Beljaars et al. (1996), Fennessy and
Shukla (1999), Douville and Chauvin (2000), and Vi-
terbo and Betts (1999) used reasonably realistic soil
moistures (e.g., from reanalyses or offline prescribed
forcing analyses) to initialize AGCM simulations, and
all found some cause for encouragement—suggestions
that the initialization does improve the simulation of
precipitation and/or temperature.

For the forecast experiments of Koster and Suarez
(2003), a preliminary simulation was performed in
which AGCM-generated precipitation rates were re-
placed with observed rates prior to applying the pre-
cipitation to the land surface. The land surface in this
simulation thus evolved soil moistures that reflected ob-
served antecedent precipitation. These soil moistures
were then used as initial conditions for separate forecast
simulations. The study’s main contribution was an il-
lustration of how three factors—the size of typical soil
moisture anomalies, the sensitivity of evaporation to soil
moisture, and the sensitivity of precipitation to evapo-
ration—work together to determine the impact of soil
moisture initialization on the forecast. In addition, eval-
uations of forecasted precipitation and temperature
against observations suggested some improvement as-
sociated with land initialization. Koster and Suarez
(2003), however, argued that the improvement was small
enough to require a much larger number of independent
forecast periods for its proper quantification—the 5 yr
analyzed in the study were insufficient for useful sta-
tistics. A similar limitation applies to the other, afore-
mentioned soil moisture initialization studies.

The present study can be considered a substantial
broadening of the Koster and Suarez (2003) study. Per-
haps most important, we examine here the impact of
soil moisture initialization on 1-month forecasts for each
of five Northern Hemisphere warm-season months in
each of 15 yr, spanning 1979–93. Thus, a total of 75
independent forecasts are evaluated against observa-
tions, enough to generate—for the first time—reason-
able statistics for the small inherent signal. This study
also features several improvements in initialization tech-
nique and analysis. For example, we use a more com-
plete set of antecedent forcing data to initialize soil
moisture; rather than focusing on observed antecedent
precipitation alone, observed antecedent radiation and
near-surface air properties from reanalysis are also em-
ployed (section 2b). Land initialization effects are ex-
amined side by side with atmospheric initialization ef-
fects, to demonstrate the relative contribution of land
initialization to total skill (section 3d). Impacts of tem-
poral scale (first half versus second half of month; see
section 3d) are considered explictly. Furthermore, the
skill levels produced are examined relative to ‘‘idealized
predictability’’—the maximum forecast skill possible in
the system—with a more robust diagnostic (section 3a)
than that used by Koster and Suarez (2003).

As a result of these and other improvements, we es-
tablish in this study much firmer conclusions regarding

the impact of realistic soil moisture initialization on
forecast skill.

2. Design of experiment

a. Modeling system

The forecast experiments make use of the seasonal
prediction system of the National Aeronautics and Space
Administration (NASA) Global Modeling and Assimi-
lation Office (GMAO), which is the same as the NASA
Seasonal-to-Interannual Prediction Project (NSIPP) sys-
tem referred to in our earlier studies (e.g., Koster and
Suarez 2003; Koster et al. 2000). The AGCM is a state-
of-the-art finite-difference model run at a resolution of
28 latitude 3 2.58 longitude. It uses the relaxed Arak-
awa–Schubert scheme (Moorthi and Suarez 1992) for
convection, sophisticated codes for shortwave and long-
wave radiation (Chou and Suarez 1994), and fourth-
order advection of vorticity and all scalars in the mod-
eled dynamics. The land surface model (LSM) is the
Mosaic LSM of Koster and Suarez (1996), a soil–veg-
etation–atmosphere transfer (SVAT) model that uses til-
ing to account for subgrid vegetation distributions. The
behavior of the coupled land–atmosphere system rela-
tive to observations is well documented (Becmeister et
al. 2000; Koster et al. 2000); the coupled model, while
not perfect, successfully reproduces the broad features
of precipitation means and variances across the globe.

b. Initialization procedure

In situ soil moisture observations do exist (Robock
et al. 2000), but they have a limited spatial distribution
and are completely absent in most parts of the world.
Satellite-derived values (e.g., Owe et al. 2001) are avail-
able across the globe for sparsely vegetated areas but
are limited temporally and represent moisture in only
the top few millimeters of soil. Thus, for global distri-
butions of soil moisture in the root zone and below, an
alternative, indirect approach is required. One promising
approach is based on the utilization of antecedent me-
teorological forcing. Rainfall, for example, is well mea-
sured globally, at least relative to soil moisture. If rain-
fall for the month prior to the forecast start date is known
to be anomalously high, the local soil moisture on the
forecast start date should be higher than average as well.

A complete and accurate global dataset of observed
meteorological forcing used in conjunction with global
soil and vegetation properties should, in principle, con-
tain all of the information needed to determine the global
field of soil moisture anomalies on any given date, if
the data are processed with a good land surface model.
This is the basis of the approach used in this paper.
Although a perfect observational dataset does not exist,
a recent dataset developed by Berg et al. (2003) is a
good approximation. This global dataset provides me-
teorological forcing every 6 h over the period 1979–
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93. Values for wind speed, surface pressure, and near-
surface air temperature and humidity are extracted from
the European Centre for Medium-Range Weather Fore-
casts (ECMWF) 15-yr Reanalysis (ERA-15; Gibson et
al. 1997), as are the submonthly breakdowns of the pre-
cipitation and radiation. Surface pressure and air tem-
perature values are elevation corrected. Monthly pre-
cipitation amounts agree with values provided by the
Global Precipitation Climatology Project (GPCP, ver-
sion 2; see Adler et al. 2003), and monthly incoming
solar and longwave radiation amounts match those es-
timated by the surface radiation budget (SRB) project
(Gupta et al. 1999). (The radiation data were available
between July 1983 and June 1991; outside this period,
the reanalysis-derived radiation values were scaled to
match SRB climatology.) Monthly averaged air tem-
peratures were forced to agree with a merged obser-
vational dataset constructed from those of New et al.
(2000) and Willmott and Matsuura (2001). Vapor pres-
sures were scaled to those of New et al. (2000).

These data are used to force a 15-yr offline simulation
of the Mosaic LSM using the Global Land Data Assim-
ilation System (GLDAS). GLDAS was developed
through a collaboration of scientists at the NASA God-
dard Space Flight Center and National Oceanic and At-
mospheric Administration (NOAA)/National Centers
for Environmental Prediction (NCEP), its goal is to pro-
duce global, reliable fields of land surface states and
fluxes by parameterizing, forcing, and constraining mul-
tiple, sophisticated LSMs with data from advanced ob-
serving systems (Rodell et al. 2004). For this particular
offline simulation, GLDAS vegetation, soil, and ele-
vation parameters were set to match those of the sea-
sonal prediction model. GLDAS/Mosaic was ‘‘spun up’’
by looping over the 1979 forcing 10 times prior to driv-
ing the LSM for the full 15-yr period. Output from the
beginning of each warm-season month provide the ini-
tial conditions used in this study. Recent analyses (Rei-
chle et al. 2004) show that a subset of these model-
generated initial conditions, the near-surface soil mois-
ture fields, are reasonably consistent with soil moisture
fields inferred from Scanning Multichannel Microwave
Radiometer (SMMR) satellite measurements and with
in situ observations from the Global Soil Moisture Data
Bank (Robock et al. 2000), given the limitations of each
dataset.

This offline forcing approach has an important ad-
vantage. Koster and Milly (1997) illustrate the model-
dependent nature of simulated soil moisture and the dan-
ger of blindly inserting soil moisture from one LSM—
or even from observations—into another LSM. Because
the GLDAS forcing is applied during the initialization
procedure to the Mosaic LSM, and because that LSM
is also used in the forecast system, this danger is largely
avoided.

Despite this guaranteed consistency, however, some
adjustment of the initialized fields is still necessary be-
cause of climate biases in the forecast system relative to

observations. As explained in Koster and Suarez (2003),
use of unmodified fields could lead to suboptimal fore-
casts—the unmodified fields would lead to a transitional
climate ‘‘drift’’ during the forecast period, a drift that
could muddle the interpretation of the forecast. To avoid
this drift, at least to first order, standard normal deviates
are used. Let be the average value of a state variableXobs

X (say, soil moisture in the root zone) on a given forecast
start date, as determined from GLDAS. Because GLDAS
produces data for 15 yr, this mean will be based on 15
values. Similarly, let sobs be the standard deviation of X
on that date, and let and smod be the correspondingXmod

AGCM statistics. If Xobs is the value of the state variable
for year n as provided by GLDAS, then the value Xmod

used to initialize the coupled land–atmosphere system is
the one that satisfies

X 2 X X 2 Xmod mod obs obs5 . (1)
s smod obs

Using (1) ensures, for example, that a relatively wet
state from GLDAS translates to a correspondingly wet
state in the coupled model. If the coupled system models
the statistics of climate perfectly at a given grid cell,
then the GLDAS value is effectively used there without
modification.

We are implicitly assuming here that the model-gen-
erated fields are accurate, to first order. In the future,
we expect to increase their accuracy through data as-
similation techniques—through the direct combination
of satellite-derived soil moisture products, limited as
they are, with the model products (e.g., Walker and
Houser 2001; Reichle and Koster 2003).

c. Ensembles performed

A total of 75 one-month ensemble forecasts were per-
formed: for each year during 1979–93, we initialized
the land surface on the first day of May, June, July,
August, and September and integrated the model for
one month following each initialization. Each of the 75
ensemble forecasts, which are examined with zero lead,
contained nine independent members.

All members of a given ensemble used the same land
surface initial conditions, namely, the land states pro-
duced by GLDAS, scaled with (1). The members of the
GLDAS ensemble differed only in their initial atmo-
spheric conditions, which were taken from nine parallel
‘‘Atmospheric Model Intercomparison Project (AMIP)
style’’ simulations, that is, simulations in which the
SSTs are prescribed to observed values. Although the
nine sets of initial atmospheric conditions in an ensem-
ble are consistent with the SSTs on the forecast start
date, they do not necessarily resemble each other or the
observed atmospheric conditions on that date; in es-
sence, each set of atmospheric initial conditions rep-
resents one realization of what nature could have pro-
duced on that start date given chaotic atmospheric dy-
namics. This is a critical aspect of our simulations. In
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FIG. 1. Scatterplot for the idealized analysis, showing the degree
to which the model can ‘‘predict itself’’ at a central U.S. grid cell
(408N, 97.58W). The x axis represents the forecasted precipitation
anomaly averaged over eight members of the GLDAS ensemble, and
the y axis represents the precipitation anomaly generated by the ninth
member (the ‘‘observations’’ for this idealized analysis). Seventy-
five points are plotted, one for each of the five analyzed months in
the years 1979–93. The solid line is the 1:1 line.

our main set of forecasts, we do not make use of the
source of skill used by numerical weather prediction
(NWP) systems; any skill found reflects only land ini-
tialization and SST specification. Supplemental simu-
lations, described in section 3d, examine how the ac-
curate initialization of both the atmosphere and the land
affect forecast skill.

To isolate the impact of the land initial conditions
from that of SST specification, the above forecasts are
compared to corresponding ensemble ‘‘forecasts’’ that
do not make use of a specific land surface initialization.
These otherwise identical forecasts are simply the ap-
propriate subsets of the nine parallel AMIP-style sim-
ulations. By design, the initial atmospheric conditions
are equivalent to those used in the first set of ensembles.
The initial land surface states for a given forecast in the
second set of ensembles are fully consistent with the
initial atmospheric states for that forecast, since they
are derived from the same long-term AMIP-style sim-
ulation. The land initial conditions, however, naturally
vary between the forecasts, since the land states in par-
allel AMIP-style simulations are different. In effect, the
land initial conditions for this second set of ensemble
forecasts are chosen randomly from the broad distri-
bution of states that are consistent with the concurrent
SSTs.

We hereafter refer to the first set of ensembles—the
ones using accurate land initialization—as the GLDAS
forecasts. The second ‘‘control’’ set of ensembles is re-
ferred to as the AMIP forecasts. Note that the use of
the term ‘‘forecasts’’ is not precisely correct, since we
are prescribing realistic SSTs throughout the 1-month
forecast period. In both cases, we are assuming that
SSTs can be perfectly predicted for 1 month. A com-
parison of the GLDAS and AMIP ensembles will nev-
ertheless isolate the impact of the land initialization on
forecast skill.

d. Validation data

The temperature data used to evaluate the 1-month
temperature forecasts are extracted from the dataset of
Berg et al. (2003) for the month in question. The data
source for the validation is thus the same as the data
source used in the initialization. Of course, the initial-
ization and validation data come from two nonoverlap-
ping segments of this single data source.

For precipitation, the data used across much of the
globe is similarly extracted from the Berg et al. (2003)
dataset. Over the United States, however, we replace
these data with the dataset of Higgins et al. (2000),
which is based on a much more complete rain gauge
database than was utilized by GPCP. As will be seen
below, validation in this area will be key to addressing
land initialization impacts.

3. Results

a. Idealized analysis: Maximum skill possible with
the modeling system

Before proceeding with a full, global evaluation of
forecast skill, we pause to consider the maximum skill
possible in the modeling system—the upper bound to
what we can hope to achieve. Perfect predictability with
a seasonal forecast system is precluded by atmospheric
chaos. The vagaries of chaos allow nature to take dif-
ferent evolutionary paths from initial atmospheric con-
ditions that differ only slightly from each other, within
measurement error. In effect, nature provides only one
realization of seasonal weather from a potentially broad
probability density function (PDF). The hope in sea-
sonal forecasting is that this PDF can be reproduced
accurately and can be narrowed significantly with the
specification of slowly evolving boundary conditions in
the ocean and land.

To quantify the maximum possible skill in the system,
skill that is not limited by errors in initial conditions,
boundary conditions, or validation data, we perform the
following idealized analysis. First, we assume that the
first member of the GLDAS forecast ensemble repre-
sents ‘‘nature’’ and that the remaining eight members
of the ensemble represent the actual model forecast.
Then, at each grid cell, we perform a scatter analysis,
as illustrated in Fig. 1. Each point in the figure represents
one of the 15 Mays, Junes, Julys, Augusts, or Septem-
bers analyzed in our experiments. The x coordinate is
the ‘‘forecasted’’ precipitation anomaly for the month
at a specific grid cell (in the central United States: 408N,
97.58W), computed by averaging the precipitation gen-
erated by the noted eight ensemble members and then
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subtracting from this average the multiyear model mean
for that month. The y coordinate is the corresponding
‘‘observed’’ anomaly, that is, the anomaly from the en-
semble member representing nature. The square of the
correlation coefficient (r2) is computed through linear
regression.

This r2 value quantifies the ability of the model to
predict an assumed ‘‘nature,’’ given that the model and
this nature use exactly the same internal physics, the
same surface boundary conditions, and the same initial
conditions for land. Clearly, if this idealized prediction
skill were perfect, the 75 points would lie along the 1:
1 line, and r2 would be exactly 1. If, on the other hand,
prediction skill was completely absent, the points would
be scattered randomly, and r2 would be close to zero.
In all of our analyses, if the line fitted through the points
has negative slope (indicating ‘‘negative skill’’), r2 is
automatically set to 0. This zeroing is employed to re-
duce noise in our later evaluations of model forecasts
against observations; for the idealized analysis here, the
zeroing has almost no impact. In the plotted example,
r2 5 0.39, which we interpret as an idealized skill level
of 39%. (The equivalent plot constructed from the AMIP
ensemble shows much more scatter, with a negligible
r2.)

Once the global array of r2 values is established
through this procedure, the second ensemble member is
chosen to represent ‘‘nature,’’ and the process is re-
peated. The process is performed a total of nine times,
once for each ensemble member, and the resulting nine
r2 arrays are averaged.

The top panel of Fig. 2 shows this average idealized
r2 value for precipitation, as generated from the GLDAS
ensemble. These values indicate the maximum potential
predictability associated with land initialization com-
bined with SST specification. The middle panel of the
figure shows the corresponding r2 values for the AMIP
ensemble, which indicate the maximum potential pre-
dictability associated with SST specification alone. The
differences between these r2 values are shown in the
bottom panel. These differences reflect the gain in po-
tential predictability associated with land initialization.

Clearly, in this modeling system, land initialization
can contribute to predictability over only a few key
areas: the central United States, equatorial South Amer-
ica, equatorial Africa, parts of central Asia, and the land
skirting the Bay of Bengal. These regions agree, in es-
sence, with those identified by Koster and Suarez (2003)
with an alternative, and less robust, statistic. Outside
these regions, the chaotic dynamics of the atmosphere
overwhelm any control imposed by anomalies at the
land surface. Outside these regions, a positive impact
of land initialization on precipitation forecast skill can-
not be expected. [We caution here that the indicated
regions of maximum predictability may be model de-
pendent; indeed, a strong intermodel disparity exists in
the calculation of land impacts on atmospheric processes

(Koster et al. 2002). See also the discussion of Fig. 11
in section 4.]

Figure 3 provides the same information for the ide-
alized air temperature forecasts. The inherent predict-
ability of temperature associated with land initialization
greatly exceeds that of precipitation throughout most of
the globe, in terms of both magnitude and the areal
extent of impact. This is not a surprise if one assumes
a stronger physical connection between soil moisture
and air temperature (through the former’s impact on
evaporative cooling) than between soil moisture and
precipitation. The areas of impact include some South-
ern Hemisphere regions. In some areas, however, such
as northern Asia and much of either coast of North
America, chaotic atmospheric dynamics still prevent
any prediction at all.

b. Assessing skill: Main area of focus

Two strong constraints limit our analysis of the im-
pacts of soil moisture initialization on forecast skill: 1)
soil moisture initialization must have a statistically sig-
nificant impact on the forecast, and 2) the applied initial
soil moisture must be of acceptable accuracy. The first
requirement was addressed in section 3a. In our as-
sessments of skill in this modeling system, we need not
look outside the shaded areas in the bottom panels of
Figs. 2 and 3. Furthermore, we note again that an ide-
alized r2 increase associated with land initialization in
either figure is indeed an upper bound for the actual r2

increase for the forecasts with this system—an upper
bound that will be difficult to attain, given unavoidable
errors in model initialization and parameterized physics.
The actual r2 increase must be accomodated between
this upper bound and a value of, say, 0.035, which is
significantly different from zero at the 90% confidence
level. In this paper, to increase the potential for dis-
cernable forecast skill, we focus our analyses on areas
for which the idealized r2 increase in the bottom panel
of Figs. 2 or 3 exceeds 0.1. These areas are outlined
with black lines in the panels. (Alternative choices for
the critical value do not significantly affect the results.)

The second constraint is now addressed. While de-
finitive estimates of soil moisture accuracy are impos-
sible given the paucity of in situ data, an analysis of
the factors that determine soil moisture does provide
guidance. The initialization system relies on the spec-
ification of realistic soil type, vegetation type, and var-
ious forcing data: radiation, precipitation, and near-sur-
face meteorological quantities such as specific humidity
and temperature. Errors in the specification of any of
these quantities could lead to errors in land surface ini-
tialization.

For this study we focus on the precipitation forcing,
making the assumption that precipitation is the key driv-
er of soil moisture anomalies. Clearly, if the precipi-
tation forcing is poor, soil moisture values cannot be
trusted. Oki et al. (1999) demonstrated that a minimum
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FIG. 2. Idealized analysis that quantifies the upper limit of predictability in the model.
(top) Averaged r2 values for the idealized precipitation forecasts generated by the GLDAS
ensemble. (middle) Same, but for the AMIP ensemble. (bottom) Differences. Values of
0.035, 0.05, and 0.08 in the bottom plot are significant at the 90%, 95%, and 99% levels,
respectively. The black lines outline the regions for which the differences exceed 0.1,
a requirement we impose for our later analyses.

of about 30 precipitation gauges per one million square
kilometers, or about 2 gauges per 2.58 3 2.58 GPCP
grid cell, are required for accurate streamflow simula-
tion. Because this density would severely limit the areas
over which we could evaluate forecast skill, we employ
an arbitrarily lower (but still nonzero) critical level for
our analysis. We assume here that a rain gauge density
of 0.5 gauges per 2.58 3 2.58 GPCP grid cell is required
for a reasonably accurate initialization of soil moisture.
(The exact value chosen turns out to have little impact
on the results.)

Figure 4 shows the density of precipitation gauges
used by GPCP to generate monthly precipitation totals.

(Again, monthly GPCP totals underlie the precipitation
forcing used to drive the land model in the initialization
phase.) In fact, the plot shows the minimum density
over the 15 yr of analysis; this was determined by first
finding the average density in each GPCP cell for each
year (all 12 months) and then identifying, for each cell,
the year with the lowest value. Tremendous changes
in the yearly coverage of gauges utilized by GPCP—
associated with a 1986 switch in gauge network—ne-
cessitate the consideration here of minimum density
rather than 15-yr average density. As seen from the
figure, many parts of the world have unacceptable den-
sities. Furthermore, as seen from a comparison of Fig.
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FIG. 3. Same as Fig. 2, but for air temperature.

4 with the bottom panel of Fig. 2, only the central
United States has both a significant soil moisture im-
pact on precipitation and an accurate soil moisture ini-
tialization, as inferred from gauge density. We will
therefore limit to this one region our assessment of soil
moisture initialization’s impact on precipitation fore-
cast skill. For monthly temperature forecasts, a com-
parison of Figs. 3 and 4 shows that several isolated
regions across the globe satisfy our criteria for forecast
assessment.

Note that in applying the rain gauge density criterion,
we are implicitly assuming that most soil moisture feed-
back effects are local. The idealized predictability cri-
terion, on the other hand, carries no such assumption;
whether soil moisture effects are local or remote, we

cannot expect, in this modeling system, to see an im-
provement in skill outside the areas outlined in Figs. 2
and 3. The assumption of purely local impacts will be
relaxed in future, more detailed analyses. We note now,
however, that for precipitation prediction, the local im-
pacts assumption essentially eliminates from further
analysis the regions of high idealized predictability in
equatorial South America and Africa. This is not a major
problem, since the rain gauge densities in the surround-
ing areas—in the potential remote controlling areas for
these two regions—also tend to be much too small. For
temperature prediction, the local impacts assumption is
more defensible, since soil moisture has a first-order
impact on local temperature through its effect on evap-
orative cooling.
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FIG. 4. Density of rain gauges (number of gauges per 2.58 3 2.58 grid cell) used to generate the GPCP monthly
product in the year with the fewest rain gauges at the grid cell, for the period 1979–93.

c. Skill assessment: One-month forecasts

In our assessment of forecast skill, we construct scat-
terplots (not shown) similar to that in Fig. 1, with the
x axis now representing the simulated precipitation
anomaly averaged over all nine ensemble members (i.e.,
the full forecast), and the y axis representing the ob-
served anomaly, relative to the observed mean. We take
the resulting r2 values, one value computed at each grid
cell using 75 forecast/observed pairs, as our measure of
forecast skill. Note that the experimental design makes
the use of certain other skill measures, such as the root-
mean-square error (rmse), problematic. Because the ex-
perimental forecast is an average of nine ensemble mem-
bers, the year-to-year variance of the forecast is nec-
essarily smaller than that of the observations, which
represents a single ‘‘realization’’ of what nature might
produce. This unavoidable variance reduction would in-
appropriately magnify an rmse diagnostic but does not
affect the r2 diagnostic.

The top-left panel of Fig. 5 shows, for the GLDAS
forecasts, the r2 values in the region of interest in North
America—in the set of grid cells having both adequate
gauge density (from Fig. 4; see section 3b) and some
clear indication of a robust impact of land initialization
on precipitation (an r2 difference value exceeding 0.10
from Fig. 2). The remainder of North America is whited
out, to focus the analysis. The top-right panel shows the
equivalent field for the AMIP forecasts. The GLDAS
forecasts do appear to reproduce observations slightly
better, as indicated by the difference map in the lower-
left panel. Note that any quantity in the difference map
indexed with a color is significant at the 90% confidence
level. Differences of 0.05 and 0.08 are significant at the
95% and 99% levels, respectively. The small negative
value in the southwest does not imply a negative impact
of land initialization, since it would not pass a test of
field significance; we can assume that this negative value
reflects sampling error.

The maximum increase in r2 in the difference map is
0.13. While significant, this increase falls far below the
idealized increase from Fig. 2, which for comparison is
shown in the lower-right panel of Fig. 5. There are many
obvious possible reasons for this: the modeling system
is presumably deficient; the initial conditions are pre-
sumably imperfect, despite the application of a gauge
density criterion; and the validation data are themselves
imperfect. Nevertheless, the improvement in the des-
ignated area does serve as evidence of a positive impact
of soil moisture initialization on precipitation forecast
skill.

Enclosed by dotted lines in the two lower plots of
Fig. 5 are those grid cells that satisfy the rain gauge
criterion and for which the idealized r2 difference value
exceeds 0.30 rather than 0.10. Thus, in this smaller area
(‘‘area 2’’), idealized predictability in the model is much
stronger. Notice that the location of the improvement in
skill lies largely within area 2—precisely where the
model is apt to provide the most skill. This is presum-
ably not a coincidence.

Figure 6 shows the equivalent four plots for air tem-
perature. The success of the forecasts with land initial-
ization is much stronger, covering much more of the
region of focus (which is, to begin with, larger than that
for precipitation). The maximum r2 increase is 0.15,
which is significantly different from zero at the 99.9%
confidence level.

Again, a comparison of Figs. 3 and 4 suggests that
for temperature, evaluations can extend beyond the
Great Plains. Figure 7 shows a global version of the r2

increases associated with land initialization. A few spots
(e.g., northeast Brazil, eastern equatorial Africa) show
a reduction in r2, presumably a reflection of sampling
error. Far more of the testable regions show increases
in r2, further supporting the idea that land initialization
contributes to temperature forecast skill. Unfortunately,
a similar extension of the precipitation analysis to the
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FIG. 5. (top left) Square of the correlation coefficient (r2) between observed monthly precipitation anomalies
and the anomalies predicted by the GLDAS ensemble, computed using 75 data pairs covering May through Sep.
(top right) Same, but for the AMIP ensemble. (bottom left) Differences. (bottom right) Differences from the
idealized analysis. Areas 1 and 2 are defined by the gauge density criterion and by two levels of potential
predictability (0.10 and 0.30) from the idealized analysis.

FIG. 6. Same as Fig. 5, but for air temperature.
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FIG. 7. Global version of the lower-left panel of Fig. 6: differences in the skill levels (the r2 values, relative to
observations) between the GLDAS temperature forecasts and the AMIP temperature forecasts.

globe is not as telling. Only a handful of grid cells
outside of North America satisfy the two evaluation
criteria, and r2 differences in these grid cells cannot be
distinguished from sampling error. Furthermore, relax-
ing either the rain gauge density criterion or the potential
predictability criterion, in order to allow additional areas
for examination of precipitation forecast skill, does not
yield useful results; as might be expected, the skill levels
in the new, less promising areas are indistinguishable
from noise.

Again, all of the skill increases examined in this study
are limited by model and data deficiencies. Throughout
this analysis, we are, in a sense, determining minimum
skill increases. As discussed further in section 4, skill
will presumably increase as the models and data get
better.

Figure 8 provides a rough indication of how forecast
skill varies with month. The r2 values calculated from
a single month’s worth of data (15 pairs of values at
each grid cell) are relatively unreliable, statistically. If
we average these unreliable r2 values, however, across
all grid cells within our areas of focus, we can expect
some filtering of the noise and the emergence of an
underlying signal. Two areas—area 1 and area 2 from
Figs. 5 and 6—are considered here for both precipitation
and temperature. The four plots in Fig. 8 show the areal
averages of r2 as a function of month. For both precip-
itation and temperature forecasts, the average r2 values
in most of the months are indeed generally higher when
the soil moisture is properly initialized, especially for
area 2, for which predictive skill should indeed be high-
er. Improvement in precipitation forecast skill is evi-
dently highest in May through July. For temperature
forecasts, land initialization seems to provide the most
skill during August and September. The reasons for
these monthly differences are not currently known.
Monthly variations in idealized skill (not shown) are not
so large.

d. Impact of atmospheric initialization

Up to now, atmospheric initialization has not been a
focus of this paper. The individual ensemble members
in the experiments above were not initialized with re-
analysis fields but rather with very different atmospheric
conditions, taken from the broad range of possible states
that are consistent with the imposed SSTs. To examine
the relative importance of land and atmospheric ini-
tialization, we performed two sets of 1-month nine-
member ensemble forecasts for each June during 1979–
93. In the first set (hereafter referred to as GLDAS-
Atm), the member simulations were initialized with both
the GLDAS land surface states and with atmospheric
anomalies from the NCEP reanalysis [provided by the
NOAA–Cooperative Institute for Research in Environ-
mental Sciences (CIRES) Climate Diagnostics Center,
Boulder, Colorado, from their Web site at http://
www.cdc.noaa.gov]. In effect, the atmospheric anom-
alies from the NCEP reanalysis (relative to the reanal-
ysis’s climatology) were applied to the AGCM’s own
climatological mean state, and perturbations were im-
posed in all atmospheric variables to allow the different
ensemble members to evolve independently. (These per-
turbations were, of course, small enough to ensure that
each set of imposed anomalies looks very much like the
unperturbed set of anomalies.) In the second series of
ensembles (hereafter referred to as Atm), the atmosphere
in each ensemble member was similarly initialized with
reanalysis data, but the land was not initialized with
GLDAS states—the same set of land states employed
in the AMIP simulations, which represents the full dis-
tribution of land states consistent with the imposed
SSTs, was used instead.

Because only June simulations were performed, all
of the computed statistics for the GLDAS-Atm and Atm
simulations are based on 15 values rather than 75 values.
Therefore, these statistics, like those for the monthly r2
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FIG. 8. (top left) Monthly r2 values averaged over area 1 from Fig. 5, for both the
GLDAS and AMIP simulations. (top right) Same, but for averages over area 2 from
Fig. 5. (bottom) The corresponding plots for air temperature, with areas 1 and 2 defined
in Fig. 6.

values in Fig. 8, are somewhat unreliable. Nevertheless,
they can still provide a rough indication of relative skill,
especially when averaged over our area of focus (area
1 for each variable in Figs. 5 and 6).

We begin with an idealized analysis, equivalent to
that performed in section 3a. The histograms in Fig. 9
show, for both the first and second halves of June, the
degree to which the model can predict itself (i.e., the
degree to which atmospheric chaos alone would foil the
forecast) under the different initialization scenarios. For
clarity, the bars are identified according to the aspects
of the system that can provide skill. For the AMIP en-
semble, this can only be the specification of the SSTs.
For the GLDAS ensemble, only the SSTs and the land
initialization contribute to skill, and for the Atm ensem-
ble, only the SSTs and the atmospheric initialization do.
All three elements contribute to skill in the GLDAS-
Atm ensemble. Each bar represents an average of the
r2 values over area 1.

For both precipitation and temperature, the contri-
bution of atmospheric initialization to idealized pre-
dictability is quite large during the first half of the month
and is much smaller during the second half. This is
consistent with current understanding of operational nu-
merical weather prediction. The contribution of land
initialization to idealized predictability, on the other
hand, is roughly the same in both halves of the month.
During the second half of June, the contribution of land

initialization is about the same as that of atmospheric
initialization. Notice that the maximum predictability is
obtained when both the land and the atmosphere are
initialized. The contributions from the land and atmo-
sphere even seem additive, as if the system were linear.

Figure 10 shows the monthly skill levels obtained
when the forecasts are compared to observations. For
precipitation, land initialization appears to contribute
slightly more to monthly skill. For temperature, atmo-
spheric initialization appears more important, though
maximum skill is obtained when both land and atmo-
sphere are initialized.

Unfortunately, because only 1 month is considered
here and the underlying skill levels are small, sampling
error prevents a statistical evaluation of skill for the
separate halves of June. Qualitatively, the results look
similar to those in Fig. 9, at least in terms of the relative
performance of the different initialization procedures.
When all 5 months of the GLDAS and AMIP ensembles
are considered together (not shown), the land’s contri-
bution to temperature forecast skill appears to be
weighted heavily to the first half of the month. The
land’s contribution to precipitation skill, on the other
hand, appears roughly the same throughout the month.

4. Summary and discussion
The forecasts examined herein allow a first assess-

ment of the impact of land initialization on 1-month
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FIG. 9. (top) (left) Average of the r2 values across area 1 in Fig. 5 for idealized precip-
itation forecasts (wherein the model ‘‘predicts itself’’; see section 3a) during the first half
of Jun—results are shown for four forecast ensembles (AMIP, GLDAS, Atm, and GLDAS-
Atm), each making use of a unique combination of three different elements (SST speci-
fication, land initialization, and atmospheric initialization) contributing to forecast skill;
(right) same, but for air temperature over area 1 in Fig. 6. (bottom) Same, but for the
second half of Jun.

FIG. 10. (left) Average of the r2 values for Jun precipitation forecasts (computed through
regressions against observations) across area 1, as outlined in Fig. 5. Results are shown
for four forecast ensembles (AMIP, GLDAS, Atm, and GLDAS-Atm), each making use
of a unique combination of three different elements (SST specification, land initialization,
and atmospheric initialization) contributing to forecast skill. (right) Same, but for air
temperature over area 1 in Fig. 6.

forecast skill. For precipitation, analysis is unfortunately
limited to a small area of North America (centered on
the Great Plains), for this is the only area that jointly
satisfies two criteria during the study period: first, that
the model shows some predictability in an idealized
analysis (section 3a), and second, that the precipitation

is adequately measured, as determined by a critical rain
gauge density (section 3b). In this region, forecast
skill—for both precipitation and air temperature—is in-
deed higher for the ensembles using realistic land ini-
tialization than for the ensembles in which the land is
not initialized. In places, the improvement is statistically
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FIG. 11. (a) Correlation between precipitation time series in the
outlined box and that in each grid cell of the United States, as de-
termined from an observational dataset (Higgins et al. 2000). (b)
Same, but using precipitation from AGCM simulations.

FIG. 12. Scatterplot comparing monthly rainfall anomalies over
May through Sep from two data sources: the GPCP version 2 dataset
(Adler et al. 2003), as processed by Berg et al. (2003), and the Higgins
et al. (2000) dataset. The former was used in the initialization of the
land model.

significant at the 99% confidence level. Furthermore,
for temperature prediction, significant forecast skill can
be seen outside the Great Plains region (Fig. 7).

Further analysis shows that land initialization, cou-
pled with atmospheric initialization, improves over at-
mospheric initialization alone. The data on submonthly
skill levels are noisy, but the idealized analysis suggests
that in the last half of the month, land and atmosphere
initialization contribute roughly the same amount to the
potential predictability of precipitation and temperature.

The skill improvements shown in this paper are sig-
nificant but are also quite small—perhaps too small to
be of practical use. Here we must reiterate that the small
improvements are, in a sense, minimum improvements.
Current skill is limited by inadequacies in both the mod-
eling analysis and the available observational data.

One inadequacy in the modeling is illustrated in Fig.
11. Figure 11a shows the correlation between the time
series of monthly precipitation amounts in the outlined
box and concurrent time series across the rest of the
continental United States, as determined from obser-
vations (Higgins et al. 2000). The plotted correlations
thus, in a sense, reflect the spatial structure of monthly
precipitation anomalies in nature. Figure 11b shows the
same diagnostic computed from precipitation rates gen-
erated in an AMIP simulation. The spatial structure of
the correlation field is much larger in the observations,

implying that the AGCM underestimates the spatial ex-
tent of precipitation anomalies. The box outlined in the
figure is representative; other boxes in the area produce
similar results.

The misrepresentation of spatial precipitation struc-
tures in the AGCM may or may not reflect an inability
of the model to capture remote impacts of soil moisture
on precipitation. In any case, it suggests that the areas
of idealized predictability in the model (Figs. 2 and 3)
may be underestimated. Improvements in the model’s
dynamics may extend significantly the areas of potential
skill shown in the figures. Even in the absence of model
improvement, statistical procedures that take advantage
of the known spatial correlations in Fig. 11a could be
used to improve the model forecasts. Preliminary results
(not shown) from this line of inquiry are encouraging.

Further limiting prediction skill are imperfections in
the land initialization and forecast evaluation proce-
dures. The data we apply in the initialization sequence,
for example, have significant uncertainties. Figure 12
shows a scatterplot comparing monthly precipitation to-
tals from the GPCP dataset (which was used in the ini-
tialization) and the more measurement-intensive dataset
of Higgins et al. (2000) over grid cells within the area
of focus (see Fig. 5). The two datasets do agree to first
order, but the points are scattered around the 1:1 line
(r2 5 0.72), despite the application of the rain gauge
criterion in defining the area. The scatter belies an un-
certainty that may have compromised the initial soil
moistures we used. Additional problems undoubtedly
arise from errors in the day-by-day temporal disaggre-
gation of the monthly precipitation totals, which was
determined from reanalysis, and from deficiencies in the
LSM’s ability to convert the forcing into anomalies with
the proper magnitude and memory. As datasets and
models improve—as we take advantage, for example,
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of new satellite measurements of soil moisture analyzed
in a data assimilation framework, new estimates of pre-
cipitation from global satellite networks, and improve-
ments in model formulation—the skill associated with
the initialization should increase.

When evaluating skill in this paper, all years were
given equal weight. Worth investigating is the idea that
some years—particularly years with extreme initial con-
ditions—may be easier to predict. In the midwestern
U.S. drought of 1988, for example, the average observed
June precipitation anomaly (area 2 in Fig. 5) was 20.34
mm day21. The GLDAS ensemble predicted an average
anomaly of 20.38 mm day21, whereas the AMIP en-
semble generated a positive average anomaly of 0.3 mm
day21. More research is needed to clarify the relative
predictability of extreme versus nonextreme years.

Our long-term goal, of course, is to achieve the po-
tential forecast skill indicated in Figs. 2 and 3—and
beyond, if improvements in the model allow. Again,
with an improved model and improved observations,
the areas over which we can look for skill should expand
considerably. For precipitation, we will no longer need
to limit our evaluations to the Great Plains of North
America.
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